DNA SYNTHESIS & REPLICATION

This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

Structure of deoxyribonucleotide

- Primary structure of DNA
- Two components
 - Backbone: sugar + phosphate
 - Nitrogen containing bases: ATGC

DNA backbone

- Phosphodiester linkages bond nucleotides
- DNA has a direction
 - 5' end: start
 - Phosphate
 - □ 3' end: finish

DNA's secondary structure

- Watson and Crick proposed:
 - 2 DNA strands are antiparallel
 - line up in opposite direction
 - 5' links with 3'
 - Base pairing is complementary
 - Adenine bonds with Thymine
 - Guanine bonds with Cytosine

DNA's secondary structure

- Watson and Crick proposed:
 - Twists to form double helix
- Rosalind Franklin
 - Laboratory technician
 - Provided photographic evidence
 - Research used without her permission

DNA as templates

- Watson and Crick proposed:
 - Strands of DNA served as templates (patterns) for production of new strands
 - According to complementary base pairing

Alt. hypotheses for DNA replication

- Semiconservative replication
 - Parental DNA separate and each strand is template
 - Daughter molecules: 1 old & 1 new strand
- Conservative replication
 - Parental DNA is template for synthesis of new molecule
- □ Dispersive replication
 - Daughter molecules old DNA interspersed with newly synthesized DNA

Alt. hypotheses for DNA replication

- □ Semiconservative replication
 - Parental DNA separate and each strand is template
 - Daughter molecules: 1 old & 1 new strand
- Conservative replication
 - Parental DNA is template for synthesis of new molecule
- Dispersive replication
 - Daughter molecules old DNA interspersed with newly synthesized DNA

Alt. hypotheses for DNA replication

- □ Semiconservative replication
 - Parental DNA separate and each strand is template
 - Daughter molecules: 1 old & 1 new strand
- Conservative replication
 - Parental DNA is template for synthesis of new molecule
- Dispersive replication
 - Daughter molecules old DNA interspersed with newly synthesized DNA

Meselson-Stahl Experiment

- □ To determine how replication occurs
- \square Grew E. coli in 'heavy' nitrogen (^{15}N)
- After many generations
 - Moved back to 'normal' nitrogen medium (14N)
 - Separated DNA by density

EXPERIMENT EXPERIMENTAL SETUP:

- 2. Transfer cells to 14N 1. Grow E. coli cells in 15N medium. Collect samples. medium. Purify DNA.
 - 3. Leave cells in 14N to divide again. Collect sample. Purify DNA.

4. Centrifuge samples.

Meselson-Stahl Experiment

EXPERIMENT

RESULTS:

What was their conclusion?

Meselson-Stahl Experiment

EXPERIMENT

RESULTS:

CONCLUSION: Data from generation 1 conflict with conservative-replication hypothesis. Data from generation 2 conflict with dispersive-replication hypothesis. Replication is semiconservative.

DNA polymerase

- Meselson & Stahl showed
 - each parental DNA strand is copied in entirety
 - Did not give a mechanism
- DNA polymerase discovery
 - Cleared way for understanding DNA synthesis

DNA polymerase

- Only work in one direction
- Add nucleotides only to3' end
- DNA synthesis always proceeds
 - $\square 5' \rightarrow 3'$ direction

- Replication bubble forms in chromosome
- Synthesis proceeds bidirectionally
 - Bacteria have a single origin of replication
 - Eukaryotes have multiple origins of replication

- Helix is opened by:
 - Helicase
 - Enzyme that breaks bonds b/n DNA strands

- Helix is stabilized by:
 - Single-strand DNA-binding proteins (SSBPs)
 - Attach to separate strands to prevent closing

- Unwinding of helix creates tension
 - Topoisomerase
 - Cuts and rejoins DNA downstream of replication fork
 - Relieving tension

- DNA polymerase requires a primer (Primase)
 - Provides a 3' hydroxyl (OH) group that can combine with a nucleotide to form first phosphodiester bond

Replisome

- One multi-enzyme machine
 - Allows for the synthesis of a new DNA strand
 - □ 1 for the leading strand; 1 for the lagging strand

Lagging strand

- Other strand
- Synthesized discontinously
 - In direction away from fork
 - Lags behind fork
 - $b/c 5' \rightarrow 3'$

- □ Telomeres
 - End regions of linear chromosomes
- At end
 - No way to replace RNA primer from lagging strand with DNA, b/c no available primer
- Primer is removed
 - Leaves single-stranded section of DNA
 - Eventually clipped off, shortening chromosome

© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

- Telomere don't contain genes
 - But short repeating stretches of bases
- Telomerase
 - Enzyme that adds more repeating bases to end of lagging strand

DNA edits mistakes

- Replication is very accurate
 - 1 mistake for every billion bases
- When mistakes occur after synthesis
 - Repair enzymes remove defective bases and repair them

DNA edits mistakes

(a) DNA polymerase III adds a mismatched base...

(b) ...but notices the mistake and corrects it.

DNA edits mistakes

- Even DNA polymerase misses mismatched pairs
- Mismatch repair enzymes
 - Recognize mismatched pairs and fix them
- But nothing is perfect